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Abstract:  

     A dominating set S  of a graph G  is said to be a k -isolate dominating set if S  has at least  k -isolated 

vertices. In this paper, k -isolate domination number of Total graph of Path, cycle and comb graphs are 

found. 
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1. INTRODUCTION 

In a graph   = ,G V E , the degree of a vertex v  in V  is the number of edges incident with v  and is 

denoted by  deg v . A dominating set for a graph G is a subset S  of V  such that every vertex in V S  is 

adjacent to atleast one vertex in  S . A dominating set S  is such that the sub graph S   induced by S  

has at least one isolated vertex is called an isolate dominating set. The concept of isolate domination 

number is first developed by I.Sahul Hamid and S. Balamurugan [ 1]:  

A dominating set S  of a graph G  is said to be a k -isolate dominating set if S   has at least k -

isolated vertices [5]. The k -isolate dominating set S  is said to be a minimal k  -isolate dominating set if 

proper subset of S  is not an isolate dominating set.  

The concept of the total graph was introduced by Anderson and Badawi[2]. The total graph ( )T G  of 

a graph G  is the graph whose the vertex set is ( ) ( )V G E G  and the two vertices in the vertex set of ( )T G  

are adjacent in ( )T G  whenever the vertices in ( )V G   are either adjacent or the vertices in ( )V G  are 

incident with the edges in ( )E G  in G  . The structural properties of total graph are investigated in [3], 

In this paper we discussed about the k -isolate domination number of total graph of path, cycle and 

comb graph.     
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                                2. Preliminary Results 

Theorem 2.1[5]: For the path nP  we have  
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Theorem2.2[5]: Let nC
 
 be a cycle with n  vertices  3n  , then  
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                                                      3. Main Results 

Theorem 3.1: For the total graph of path nP  , 
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Proof:  

 

Figure: Path graph 
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        Figure: Total graph of Path 
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From Case (i), the minimal k -isolate dominating set is 
2 4 7 9{ , , , , ,   }i jv e v e v or e  where   1i n or n   and 

1j n   . To obtain the minimal 1k  -isolate dominating set, replace the vertex  2v  by 1 3,v v  . By adding 

the vertices 1 3,v v , we will get minimal 1k  -isolate dominating set as 
1 3 4 7 9{ , , , , , ,   }i jv v e v e v or e . 

Continue the above process by replacing the vertex mv  by 1 1,m mv v   (m=7, 12,…,i) .On continuing the 

process  if i n  we should not replace the vertex iv  as it is the last vertex. Also if the last vertex is 
je , then 
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Theorem 3.2: For the total graph of cycle,
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Proof: Let the vertices of cycle be 1 2 3, , ,..., nv v v v
 
and the edges be In total graph 1 2 3, , ,..., .ne e e e  In total 

graph of cycle graph, the number of vertices be 2n  namely 1 2 1 2, ,...., , , ,...,n nv v v e e e  . 

 

 

                            

 

Figure: Cycle graph 

 

 

Figure: Total graph of Cycle 
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By case (i) the minimal k - isolate dominating set is 
2 4 7 9{ , , , ,...,   }i jv e v e v or e  where ,   1i n j n or n   . To 

obtain 1k  -isolate dominating set, fix the vertex 2v  and replace the vertex 4e  by the vertices 3e  and 5v , 

which satisfies the isolate domination condition and the minimal 1k  -isolate dominating set is 

2 3 5 7 9{ , , , , ,...,   }i jv e v v e v or e  . Also to obtain 2k  -isolate dominating set, replace the next vertex 9e  by 8e  

and 10v  and the corresponding set is 
2 3 5 7 8 10{ , , , , , ,...,   }i jv e v v e v v or e . Continuing in this way, by replacing 
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Also in ( )nT C  we have a cycle
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Since each vertex is of degree 4, the minimal k -isolate dominating set does not exist when 
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Comb Graph: Let nP  be a graph with n  vertices. Comb is a graph obtained by joining a single pendant 

edge to each vertex of a path containing 2n  vertices and 2 1n  edges. It is denoted by 1nP K  .  
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Theorem 3.3: Let 1nP K  be the comb graph and 1( )nT P K be the total graph of comb graph. Then
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Proof:  

Let the number of vertices and edges of comb graph 1nP K  be 2n and 2 1n   namely, 

1 2 1 2, ,..., , , ,...,n nu u u v v v  and 1 2 2 1, ,..., ne e e  . The cardinality of the vertices of total graph of comb graph is 

2 1 4 1n n n n      vertices namely  

 
1 2 2 12 1 21, ,..., , , ,...   , ,.., ., ,n n nu e e eu u v v v   . Let us denote 1 2, ,..., nv v v  as 

the corresponding vertices of  iu  and ( ) 2id v   , the degree of the end vertices of path namely 1, nu u  in 

1( )nT P K  is 4 and the remaining vertices 2 3 1, ,..., nu u u   
be 6. Also ( ) 3( 1,2 1)id e i n   ; 

( ) 4( 3,5,..., 2 3)id e i n    2 2 2( ) ( ) 5;nd e d e    ( ) 6( 4,6,..., 2 4)id e i n   . 

 

Figure: Comb graph 

r   

Figure: Total graph of Comb graph 

Case(i): k n   

Since the vertices ( 1,3,5,..., 2 1)ie i n   dominates all the pendant vertices iv  1 i n  , (1 )iu i n    

vertices and the remaining ( 2,4,6,..., 2 2)ie i n  vertices, the minimal  n - isolate dominating set is 

 1 3 5 2 1, , , , ne e e e  containing n  vertices. Hence  1[ ( )] ki nT P K n  when k n . 
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By case (i), the minimal k - isolate dominating set is  1 3 5 2 1, , , , ne e e e . To obtain the  1k - isolate 
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