k-Isolate Domination Number of Total Graphs

${ }^{1}$ Rajasekar G., ${ }^{2}$ Jeslet Kani Bala A.
${ }^{1,2}$ Department of Mathematics, Jawahar Science College, Neyveli

Abstract

:

A dominating set S of a graph G is said to be a k-isolate dominating set if $\langle S\rangle$ has at least k-isolated vertices. In this paper, k-isolate domination number of Total graph of Path, cycle and comb graphs are found.

Keywords: Dominating set, Isolate dominating set, k-isolate dominating set, k-isolate domination number, Total graph, path, cycle and comb graphs.

1. INTRODUCTION

In a graph $G=(V, E)$, the degree of a vertex v in V is the number of edges incident with v and is denoted by $\operatorname{deg}(v)$. A dominating set for a graph G is a subset S of V such that every vertex in $V-S$ is adjacent to atleast one vertex in S. A dominating set S is such that the sub graph $<S\rangle$ induced by S has at least one isolated vertex is called an isolate dominating set. The concept of isolate domination number is first developed by I.Sahul Hamid and S. Balamurugan [1]:

A dominating set S of a graph G is said to be a k-isolate dominating set if $\langle S\rangle$ has at least k isolated vertices [5]. The k-isolate dominating set S is said to be a minimal k-isolate dominating set if proper subset of S is not an isolate dominating set.

The concept of the total graph was introduced by Anderson and Badawi[2]. The total graph $T(G)$ of a graph G is the graph whose the vertex set is $V(G) \cup E(G)$ and the two vertices in the vertex set of $T(G)$ are adjacent in $T(G)$ whenever the vertices in $V(G)$ are either adjacent or the vertices in $V(G)$ are incident with the edges in $E(G)$ in G. The structural properties of total graph are investigated in [3],

In this paper we discussed about the k-isolate domination number of total graph of path, cycle and comb graph.

2. Preliminary Results

$$
\text { Theorem 2.1[5]: For the path } P_{n} \text { we have } \gamma_{k i}\left(P_{n}\right)= \begin{cases}\left\lceil\frac{n}{3}\right\rceil & , k \leq\left\lceil\frac{n}{3}\right\rceil \\ k & ,\left\lceil\frac{n}{3}\right\rceil<k \leq\left\lceil\frac{n}{2}\right\rceil \\ \text { Does not exists , } k>\left\lceil\frac{n}{2}\right\rceil\end{cases}
$$

Theorem2.2[5]: Let C_{n} be a cycle with n vertices $(n \geq 3)$, then

$$
\gamma_{k i}\left(C_{n}\right)= \begin{cases}\left\lceil\frac{n}{3}\right\rceil & , k \leq\left\lfloor\frac{n}{3}\right\rfloor \\ k & ,\left\lfloor\frac{n}{3}\right\rfloor<k<\left\lceil\frac{n+1}{2}\right\rceil \\ \text { does not exists, } k \geq\left\lceil\frac{n+1}{2}\right\rceil\end{cases}
$$

Theorem 2.3[4]: $\gamma_{0}\left(T\left(P_{n}\right)\right)=\left\lceil\frac{2 n-1}{5}\right\rceil$, for $n \geq 2$.

Theorem 2.4[4]: $\gamma_{0}\left(T\left(C_{n}\right)\right)=\left\lceil\frac{2 n}{5}\right\rceil$, for $n \geq 3$.

3. Main Results

Theorem 3.1: For the total graph of path P_{n},

$$
\gamma_{k i}\left(T\left(P_{n}\right)\right)=\left\{\begin{array}{l}
\left\lceil\frac{2 n-1}{5}\right\rceil, \text { for } k \leq\left\lceil\frac{2 n-1}{5}\right\rceil \\
k \quad, \text { for }\left\lceil\frac{2 n-1}{5}\right\rceil<k \leq\left\lceil\frac{2 n-1}{3}\right\rceil \\
\text { does not exist, for } k>\left\lceil\frac{2 n-1}{3}\right\rceil
\end{array}\right.
$$

Proof:

Figure: Path graph

Figure: Total graph of Path

Case (i): $k \leq\left\lceil\frac{2 n-1}{5}\right\rceil$

Refer Theorem [2.3]
Case(ii): $\left\lceil\frac{2 n-1}{5}\right\rceil<k \leq\left\lceil\frac{2 n-1}{3}\right\rceil$

Let $k=\left\lceil\frac{2 n-1}{5}\right\rceil$

From Case (i), the minimal k-isolate dominating set is $\left\{v_{2}, e_{4}, v_{7}, e_{9}, \ldots, v_{i}\right.$ or $\left.e_{j}\right\}$ where $i=n$ or $n-1$ and $j=n-1$. To obtain the minimal $k+1$-isolate dominating set, replace the vertex v_{2} by v_{1}, v_{3}. By adding the vertices v_{1}, v_{3}, we will get minimal $k+1$-isolate dominating set as $\left\{v_{1}, v_{3}, e_{4}, v_{7}, e_{9}, \ldots, v_{i}\right.$ or $\left.e_{j}\right\}$. Continue the above process by replacing the vertex v_{m} by $v_{m-1}, v_{m+1}(m=7,12, \ldots, i)$. On continuing the process if $i=n$ we should not replace the vertex v_{i} as it is the last vertex. Also if the last vertex is e_{j}, then we should remove that vertex.. Finally we get the minimal $\left(\left\lceil\frac{2 n-1}{3}\right\rceil-1\right)$ - isolate dominating set as $\left\{v_{1}, v_{3}, e_{4}, v_{6}, v_{8}, e_{9}, \ldots, v_{i}\right.$ or $\left.e_{j}\right\}$ where $i=n$ or $n-1$ and $j=n-1$. To get the minimal $\left\lceil\frac{2 n-1}{3}\right\rceil$-isolate dominating set, consider the path in the total graph of path $T\left(P_{n}\right)$ as $v_{1}, e_{1}, v_{2}, e_{2}, v_{3}, e_{3}, \ldots, e_{n-1}, v_{n}$ containing $2 n-1$ vertices. Since the vertex v_{1} dominates e_{1}, v_{2} and itself, select the vertex v_{1} from the first three vertices. Similarly, as e_{2} dominates itself and the vertices v_{3}, e_{3}, select the vertex e_{2}. Hence by case (i) of Theorem(2.1) we have minimal $\left\lceil\frac{2 n-1}{3}\right\rceil$-isolate dominating set as $\left\{v_{1}, e_{2}, v_{4}, e_{5}, \ldots, v_{n-2}, e_{n-1}\right.$ or v_{n-2}, e_{n-1}, v_{n} or $\left.v_{n-1}\right\}$ according as $n \equiv 0(\bmod 3)$ or $n \equiv 1(\bmod 3)$ or $n \equiv 2(\bmod 3)$. Hence $\gamma_{k i}\left(T\left(P_{n}\right)\right)=k$ when $\left\lceil\frac{2 n-1}{5}\right\rceil<k \leq\left\lceil\frac{2 n-1}{3}\right\rceil$

Case(iii): $k>\left\lceil\frac{2 n-1}{3}\right\rceil$

Let $k=\left\lceil\frac{2 n-1}{3}\right\rceil$

Clearly in this total graph of path, there are atmost k-isolated vertices. Hence it does not exists when $k>\left\lceil\frac{2 n-1}{3}\right\rceil$

$$
\left\lceil\left\lceil\frac{2 n}{5}\right\rceil, \text { for } k \leq\left\lfloor\frac{2 n}{5}\right\rfloor\right.
$$

Theorem 3.2: For the total graph of cycle, $\gamma_{k i}\left(T\left(C_{n}\right)\right)= \begin{cases}k & , \text { for }\left\lfloor\frac{2 n}{5}\right\rfloor<k \leq\left\lfloor\frac{2 n}{3}\right\rfloor\end{cases}$
does not exist, for $k>\left\lfloor\frac{2 n}{3}\right\rfloor$

Proof: Let the vertices of cycle be $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and the edges be In total graph $e_{1}, e_{2}, e_{3}, \ldots, e_{n}$. In total graph of cycle graph, the number of vertices be $2 n$ namely $v_{1}, v_{2}, \ldots, v_{n}, e_{1}, e_{2}, \ldots, e_{n}$.

Figure: Cycle graph

Figure: Total graph of Cycle

Case (i): $k \leq\left\lfloor\frac{2 n}{5}\right\rfloor$

Refer Theorem[2.4]

Case (ii): $\left\lfloor\frac{2 n}{5}\right\rfloor<k \leq\left\lfloor\frac{2 n}{3}\right\rfloor$

ᄂLet $k=\left\lfloor\frac{2 n}{5}\right\rfloor$

By case (i) the minimal k-isolate dominating set is $\left\{v_{2}, e_{4}, v_{7}, e_{9}, \ldots, v_{i}\right.$ or $\left.e_{j}\right\}$ where $i=n, j=n$ or $n-1$. To obtain $k+1$-isolate dominating set, fix the vertex v_{2} and replace the vertex e_{4} by the vertices e_{3} and v_{5}, which satisfies the isolate domination condition and the minimal $k+1$-isolate dominating set is $\left\{v_{2}, e_{3}, v_{5}, v_{7}, e_{9}, \ldots, v_{i}\right.$ or $\left.e_{j}\right\}$. Also to obtain $k+2$-isolate dominating set, replace the next vertex e_{9} by e_{8} and v_{10} and the corresponding set is $\left\{v_{2}, e_{3}, v_{5}, v_{7}, e_{8}, v_{10}, \ldots, v_{i}\right.$ or $\left.e_{j}\right\}$. Continuing in this way, by replacing the vertex e_{r} by e_{r-1} and $v_{r+1}(r=4,9,14, \ldots, j-1)$, we get the minimal $\left(\left\lfloor\frac{2 n}{3}\right\rfloor-1\right)$-isolate dominating set as $\quad\left\{v_{2}, e_{3}, v_{5}, v_{7}, e_{8}, v_{10}, \ldots, e_{r-1}, v_{r+1}, \ldots, v_{i}\right.$ or $\left.e_{j}\right\}(r=4,9,14, \ldots j-1)$ Also in $T\left(C_{n}\right)$ we have a cycle $v_{1}, e_{1}, v_{2}, e_{2}, v_{3}, \ldots, v_{n}, e_{n}, v_{1}$ containing $2 n$ vertices.

By case (i) of Theorem[2.2], we have minimal $\left\lfloor\frac{2 n}{3}\right\rfloor-$ isolate dominating set $\left\{v_{1}, e_{2}, v_{4}, e_{5}, v_{7}, e_{8}, \ldots, v_{i}\right.$ or $\left.e_{j}\right\}(i, j=n-1$ when $n \equiv 0,2(\bmod 3)$ and $j=n-2$ when $n \equiv 1(\bmod 3)) \quad$ Case(iii): $k>\left\lfloor\frac{2 n}{3}\right\rfloor$

Let $k=\left\lfloor\frac{2 n}{3}\right\rfloor$

Since each vertex is of degree 4 , the minimal k-isolate dominating set does not exist when $k>\left\lfloor\frac{2 n}{3}\right\rfloor$.

Comb Graph: Let P_{n} be a graph with n vertices. Comb is a graph obtained by joining a single pendant edge to each vertex of a path containing $2 n$ vertices and $2 n-1$ edges. It is denoted by $P_{n} \square K_{1}$.

Theorem 3.3: Let $P_{n} \square K_{1}$ be the comb graph and $T\left(P_{n} \square K_{1}\right)$ be the total graph of comb graph. Then

$$
\gamma_{k i}\left[T\left(P_{n} \square K_{1}\right)\right]= \begin{cases}n & , k \leq n \\ k & , n<k \leq n+\left\lceil\frac{n-1}{2}\right\rceil \\ \text { does not exist, } k>n+\left\lceil\frac{n-1}{2}\right\rceil\end{cases}
$$

Proof:

Let the number of vertices and edges of comb graph $P_{n} \square K_{1}$ be $2 n$ and $2 n-1$ namely, $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}$ and $e_{1}, e_{2}, \ldots, e_{2 n-1}$. The cardinality of the vertices of total graph of comb graph is $n+n+2 n-1=4 n-1$ vertices namely $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}, e_{1}, e_{2}, \ldots, e_{2 n-1}$. Let us denote $v_{1}, v_{2}, \ldots, v_{n}$ as the corresponding vertices of u_{i} and $d\left(v_{i}\right)=2$, the degree of the end vertices of path namely u_{1}, u_{n} in $T\left(P_{n} \square K_{1}\right)$ is 4 and the remaining vertices $u_{2}, u_{3}, \ldots, u_{n-1}$ be 6 . Also $d\left(e_{i}\right)=3(i=1,2 n-1)$; $d\left(e_{i}\right)=4(i=3,5, \ldots, 2 n-3) \quad d\left(e_{2}\right)=d\left(e_{2 n-2}\right)=5 ; \quad d\left(e_{i}\right)=6(i=4,6, \ldots, 2 n-4)$.

Figure: Comb graph

Figure: Total graph of Comb graph
Case(i): $k \leq n$

Since the vertices $e_{i}(i=1,3,5, \ldots, 2 n-1)$ dominates all the pendant vertices $v_{i}(1 \leq i \leq n), u_{i}(1 \leq i \leq n)$ vertices and the remaining $e_{i}(i=2,4,6, \ldots, 2 n-2)$ vertices, the minimal n-isolate dominating set is $\left\{e_{1}, e_{3}, e_{5}, \ldots, e_{2 n-1}\right\}$ containing n vertices. Hence $\gamma_{k i}\left[T\left(P_{n} \square K_{1}\right)\right]=n$ when $k \leq n$.

Case (ii): $n<k \leq n+\left\lceil\frac{n-1}{2}\right\rceil$

Let $k=n$.

By case (i), the minimal k - isolate dominating set is $\left\{e_{1}, e_{3}, e_{5}, \ldots, e_{2 n-1}\right\}$. To obtain the $(k+1)$ - isolate dominating set, the vertices e_{1}, e_{3} in the above set is superseded by the other three vertices e_{2}, v_{1}, v_{2}. Hence the set $\left\{e_{2}, v_{1}, v_{2}, e_{5}, \ldots, e_{2 n-1}\right\}$ satisfies the minimal $(k+1)$ - isolate dominating set containing $k+1$ vertices. In this way at each step exclude two vertices $e_{i-1}, e_{i+1}(i=2,6,10, \ldots, 2 n-4$, if n is odd $)$ or $(i=2,6,10, \ldots, 2 n-4$, if n is even $)$ and include their corresponding vertices v_{i-1}, v_{i+1} and a vertex e_{i}. Eventually, if n is odd, there is no pair for the vertex $e_{2 n-1}$, then displace $e_{2 n-1}$ by its corresponding vertex v_{n}. Hence $\gamma_{k i}\left[T\left(P_{n} \square K_{1}\right)\right]=k$ when $n<k \leq n+\left\lceil\frac{n-1}{2}\right\rceil$.

Case (iii): $k>n+\left\lceil\frac{n-1}{2}\right\rceil$

Let $k=n+\left\lceil\frac{n-1}{2}\right\rceil$

By case (ii), the minimal k-isolate dominating set is $\left\{e_{2}, v_{1}, v_{2}, e_{6}, v_{3}, v_{4}, e_{10}, v_{5}, v_{6}, \ldots, v_{n}\right\}$. If we consider $k+1$ vertices, the minimal $(k+1)$ - isolate dominating set does not exist. Hence minimal k-isolate dominating set does not exist when $k>n+\left\lceil\frac{n-1}{2}\right\rceil$

References:

[1] . Sahul Hamid and S. Balamurugan, Isolate domination in graphs, Arab Journal of Mathematical Sciences 22(2016) 232-241
[2] Anderson D F and Badawi A, The total graph of a commutative ring., J. Algebra 320 (2008) 27062719
[3] J. Thomas and J. Varghese, On the decomposition of total graphs, Advanced Modeling and Optimization, 15(2013),81-84.
[4] Gloria Fernandes and Tabitha Agnes Mangam, Isolate domination in Total graphs, International Journal of Mathematics And its Applications, 6(2-A)(2018), 135-139, ISSN: 2347-1557.
[5] G. Rajasekar and A. Jeslet Kani Bala, k-Isolate Domination Number of Simple Graphs, Malaya Journal of Matematik, Vol.S, No.1, 113-115, 2019.

